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SU(2)L x SU(2)~ x U(1) Gauge Model 
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We determine here the most general electroweak interaction based on the group 
SU(2)LXSU(2)R x U(1). When we rotate the Z 1, Z2 basis to the Z, D basis 
such that the total interaction of Z with the right-handed current is zero, we 
obtain an interaction that is free of triangle anomalies. This condition enables 
us to know the angle through which Z1, Z 2 basis is to be rotated. We show that 
the triangle anomaly free interaction obtained by others is contained here as a 
special case. We also determine the triangle anomaly free weak interaction 
whenever the neutral (Z, D) bosons are mass eigenstates and show that it reduces 
to the neutral sector of the standard model whenever g2 goes to infinity. The 
charged sector is also developed here. The most general elements of the mass- 
squared matrix of the Z, D bosons are evaluated. The masses of the left- and 
right-handed charged bosons are also determined. 

1. I N T R O D U C T I O N  

In  this article we consider  a gauge model  based on the gauge group 

S U ( 2 ) L  X SU(2)R • U(1).  The charged sector and  the neutra l  sector are both  

developed in the most  general  way. We also take care that the in teract ion 
in the neut ra l  sector is free of  t r iangle anomalies .  To make it free of  t r iangle 

anomal ies ,  the usual  Z1 and  Z2 bosons  of the neut ra l  sector are rotated to 
ob ta in  Z and  D bosons  such that Z has no in terac t ion  with the JzR current.  
We de termine  the in terac t ion  whenever  the Z and  D are mass eigenstates. 

The masses of  Z1, Z2, WE, and  WR are found  for the special case of 
two doublets  in the Appendix .  Our  results differ from the mass matrix of 
Barger et aL (1982a, b; 1983). 

In  Section 2 the model  is developed and  the neut ra l  sector is analyzed. 
Section 3 deals with the charged sector, and  Section 4 determines the most  
general  e lements  of the M :  matr ix  of the Z, D bosons.  In  Section 5 we 
show that the s tandard  electroweak model  is con ta ined  in our  model.  In  
the Appendix ,  we just i fy our  results for the elements  of the M 2 matrix when  

there are only  two Higgs doublets .  

lKothagudem School of Mines, Osmania University, Kothagudem 507106, India. 
1105 

0020-7748/86/1000-1105505.00/0 @~ 1986 Plenum Publishing Corporation 



1106 Raju 

2. THE NEUTRAL SECTOR 

The Lagrangian ~ invariant under the gauge group S U ( 2 ) L  x SU(2)R x 
U(1) is given by 

~97= -- ~L,y,~ [0, ~ --ligL, r "A,~ --�89 
- ~%,[o~ -�89 B~ -~ig'(-1)c,d~,~ 

+ kinematic part of the vector bosons 

+ Higgs sector (1) 

where 

with 

I~L = ( / " ; L ) ,  ~R .~ ( /"e  R /  
\ e R /  

IL.R = �89 • ys)l (2) 

The Higgs sector will be discussed in the Appendix. The above Lagrangian 
can be easily extended to include other leptons/z, r, etc. 

From equation (1), the neutral sector part is given by 

2~ Nc = +i(gLJ3LA3 + gRj3RB3 + g'jyC) (3) 

where 

~- -~- ~/]/L 3/~ 7"3 I]/L j 3L 1 -- 

J3R = +I~RT~'3~0R (4) 

= --l(lffL'Yc~l~gL ~l- IffR')/otl~R ) 

Here gL, gR, and g' are the gauge constants. Let Aem, Z1, and Zz be the 
mass eigenstates. In general, we have 

/A.m~ /e/gL e/gR 
=/g,/gL algl/gR blgl/g',Hn3 | (5) 

~12 ) e/g' ~/A3~ 

\g2/gL a2g2/gR beg2/g / \  C /  

From equation (5), and from the orthonormality relations among the elec- 
tromagnetic field A,m and the fields Z~ and Zz, we easily find that 

e 2 

g'---~ = ( 1 - x L - XR) 

K + ala 2 bl 
K+a2 
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e 2 K+a~a2 
XL = g2-- (1 -- a0(a  - a2) - KXR 

(6) 
K + ala2 

b2 = - -  
K + a l  

g~ = e2( K + a2) 

XL(1 -- al)(a2-- al) 

g2 = e2( K + al) 

XL(1 -- a2)(al -- a2) 

where we have defined K through 

Kg[  = g2R and xa = e2/ g~ 

We now reexpress A3, B3, and C in terms of Aem , Z l ,  and Z2. We have 

(Ac~) . /gL(a~b2-a2b~)/e gL(a2--b2)/ga gL(bl-ax)/g2~f Aem~ 
= ~ [  gR(b , -b 2 ) / e  gR(b2-1) /g l  g R ( 1 - b l ) / g 2 1 1  Z l /  (7) 

q \  g ' (a2 -aa ) / e  g ' ( 1 - a 2 ) / g l  g ( a ~ - l ) / g 2  ] \  Z2 ] 

where 

q = alb2 - a2bl - b2-k bl + a2 -- al 

It is useful to note that 

(8) 

K ( l + a O ( 1 - a 2 ) ( a 2 - a l )  a 2 - a l  
q= ( K + a l ) ( K + a 2 )  --1--XL--XR (9) 

These are obtained from (8) and (6). We introduce the expansions of A3, 
B3, and C into (3) and by using equations (6), (8), and (9) repeatedly. We 
find that 

~NC = iejemAem + igajlZ~ + ig2j2Z2 (10) 

where 

Jem =J3L+j3R+jy (11) 

j ,  =j3L + alAR+ b,jy (12) 

j2 : j3L + a2j3R + b2jy (13) 

In the Appendix we show that the mass of Aem is zero, and the two fields 
Z1 and Z2 develop mass whenever the symmetry is broken by the doublets 
4h and q~2. 
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By eliminating bl, b2, and jy from equations (11)-(13) we rewrite jl  
and J2 in the following form; 

(1 - al)( a2Jze- KJzR) 
Jl = (14) 

K + a z  

(1 - az)( a,JzL-- KJzR) 
J2 = , (15) 

K + a l  

where JzL = j3L-- XLjem and JzR =j3R--XRjem. 
That equations (10)-(13) are correct was also shown by Bajaj and 

Rajasekaran (1979). The weak part of the Lagrangian is given by 
N C  

~ w e a k  = ig lZl j l  q- ig2Z2j2 (16) 

Let (Z, D) be vector bosons with the following mass-squared matrix: 

M2= Pl (17) 
P 2  P3  

where Pl, P2, and p3 are in general functions of the various vacuum 
expectation values (VEVs). This matrix can be diagonalized by an 
orthogonal matrix, 

( cos~0 sinqJ) (18) 
R(qJ)= - s i n 0  cos0  

if 

tan 241 = 202/(p3 - Pl) (19) 

We can always rewrite (16) in terms of the (Z, D) bosons, which are not 
mass eigenstates, by rotating the (Z1, Z2) basis through R(0)  to the (Z, D) 
basis. The purpose of this rotation is to see that the total interaction of Z 
with JZR is zero. We therefore introduce (Z1, Z2) = R(tp)(Z, D) and require 
that the total interaction of Z with JzR be zero. This simple requirement 
yields the following expressions: 

N C  ~"~/~weak = igzZJzL + igzD[[3JzL + (o~ + [3 )JzR] (20) 

where 

(1  - a 0 ( a 2 -  al) 
gz = g l  COS ~b (21) 

K+a2 

a 2 tan 0 + al cot ~O 
[3 - ( 2 2 )  

a 2 - a 1 

K(tan 0 + c o t  0) 
+ 13 = (23 )  

a 2  - a l  
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We obtain (20) if and only if 

tan 2 ~ =  2 2 + g z / g t  (24) 

The interaction given by (20) is free of triangle anomalies (Bell and 
Jackiw, 1969). Barger et al. (1982a, b; 1983) express gz, /3, and a + f l  as 
functions of  only two variables, XL and XR. These authors assume that 
of  equation (19) is an independent  variable. Barger's version is a special 
case of our equation (20). 

When we put a l = 0  and a Z = - - ( K - - X L ) / X L  we obtain (Raju, 1985) 
from equations (21)-(23) that 

gz = e /  x[/Z(1 - Xe) 1/2 (25) 

/3 = ( XL XR) I/2 / ( I -- XL-- XR) 1/z (26) 

x~/2(1 - xL)  
a +/3 = x~/2(1 _ XL -- XR) 1/2 (27) 

When these expressions for gz, /3, and a +/3 are introduced into (20), we 
obtain an interaction identical to Barger's expression for the triangle 
anomaly-free weak interaction with two neutral currents. But now tan 2 $ = 
/32. In other words, whenever Barger's version is true, the Z, D bosons are 
not mass e!genstates and these Z, D bosons can never b e  mass eigenstates. 
This point was discussed in detail elsewhere (Raju, 1985). In that note we 
determined the interaction when Z, D bosons are mass eigenstates. This is 
given by 

NC 
5(weak = i g j z L Z  + igz[/3JzL -- (Ce +/3 ) J z R J D  (28) 

where gz, ~, and c~ +/3 are still given by equations (25)-(27). We obtained 
(28) from (20) when a2-+-oo, and a l = - - X L / ( 1 - - X L ) .  For these values 
tan 2 ~ = 0, which in turn means g22-+ 0 in such a way that g2j2 is finite. Note 
the negative sign before o~ +/3 of (28). I f  this sign is positive, we obtain 
Barger's version in which Z, D are not, and can never be, mass eigenstates. 
We believe that equation (28) is the only correct generalization of  the neutral 
sector of  the standard electroweak model (Weinberg, 1967). 

3. THE CHARGED SECTOR 

As in the standard model, we define the charged vector bosons in the 
following way: 

W~I~ = (l/x/2) ( a~  - iA 2) (29) 

IV, L = (1/x/-2)(a~ + i a  2) (30) 
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This is the usual left-handed charged W boson. We also have here 

WaR = (1/,/2)(B~ - iBm) (31) 

I~'~R = (1/x/2)(B~ + ibm) (32) 

where WaR is the right-handed charged boson. With these definitions, the 
interaction terms of the charged sector of  (1) read 

igL- H.c.) + ( ~  VeR,~eR W~R+ H.c.) (33) l"eL'yaeL Wo~ L "~ igR 

If now VeR = 0, the second term in (33) will be zero. This means that the 
electron neutrino is strictly left-handed. An extension of this will yield the 
interaction terms of the other leptons in the charged sector. 

4. THE ELEMENTS OF THE (Z,  D ) M  2 MATRIX 

The symmetry breaking is usually assumed via the 05~, where i = 1-5; 
Symmetry breaking via 051 and 052 doublets preserves the neutral to charged 
current ratio of the standard model for left-handed neutrino interactions. 
We use the notation (It., IR, B-L~2) to denote these multiplets. For 05i and 
052 we have (�89 0, -�89 and (0, ~, �89 respectively. The 053 multiplet (�89 �89 0) is 
required to generate the fermion masses (Rizzo and Senjanovic, 198 1). This 
053 quartet has two neutral members with VEVs u3 and v3. The complex 
triplets 054 and 055 have (1, 0, 1) and (0, 1, -1 )  with VEVs v4 and vs, respec- 
tively. The elements of M 2 of equation (18) are now given by 

/91 = A t COS 2 ~J'~-A 2 sin 2 tp (34) 

p~= (A~-A,) sin ~ cos ~0 (35) 

P3 = A1 sin 2 tp + -~2 cOS2 ~t (36) 

Here tan 2 ff is given by equation (24). Moreover, we have 

, 2 ( 1 - a l )  2 2 2 Al=agl(K +a2)2[a2Vo-2a2K(u2+v2)+ K2V~] (37) 

A 1 2 ( l - a 2 )  2 r  2 2=ag2.~-7-~)eta,V~-2alK(u2+v2)+K2V~] (38) 

In the above 

Vo 2 2 2 = vl + u3q- v 2 q - 4 v  2 

V~x 2 2 2 2 = v 2 +  u 3 +  v 3 + 4 v  5 

(39) 

( 4 o )  
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The eigenvalues o f M  2 are A1 and A2. In other words, A1 - - m 2 z~ and A2: m222. 
These elements of M 2 are correct for the most general triangle anomaly-free 
weak interaction given by equation (20), for which gz,  /3, and a +/3 are 
given by equations (21)-(23). By Barger's version, we mean equation (20), 
for which gz,/3, and a +/3 are given by equations (26)-(27) and tan 2 ~ =/32 
The elements of  M 2 that are correct for Barger's version are obtained from 
equations (34)-(36) by setting (Raju, 1985) tan20 =/32, al =0,  and a2= 
- ( K  - x O / x c .  The expressions for the elements of M 2 obtained in this way 
do not tally with the elements of a similar matrix given by Barger et al. The 
correctness of our expressions depends upon the right expressions for A1 
and A2. In the Appendix, we show that the expressions of A1 and *~2 a r e  

correct in the case when the symmetry is broken by Chl and ~b2. The extension 
to other Higgs multiplets is straightforward. 

The M 2 matrix corresponding to equation (28) must be diagonal. We 
obtained (28) from (20) by taking a2>> al and K and with al = XL/(1--XL). 
By using these values, we note that (since tan 2 q, = 0 for these values) 

m 2 1 2 = ~gz V 2 (41) 

m ~ =  �88 + Z/3( ce + /3 )(u2 + v~) + (ce + /3)2V 2] (42) 

Barger et al use the same set of ~b's to break the symmetry. Their diagonal 
elements do coincide with (41) and (42). Of course, they have an opposite 
sign before the 2/3(a+/3)  term of (42). Precisely if we change the sign 
before their (ez +/3) term in their interaction in which Z, D are not mass 
eigenstates, we obtain our equation (28) in which (Z, D) are mass eigen- 
states. 

Suppose spontaneous symmetry breaking takes place via the doublets 
~bl and ~b2 only; then m 2 and m~ are given by 

m2z 1 2 2 =~gzv~ (43) 
2 1 2 2 2 m o = z g z [ / 3  vl+(c~+/3)2v22] (44) 

Expressions (43) and (44) can be very simply obtained from (41) and 
2 2 0 2 =  2 (42) by setting u3 = v3 = v5 = 0. 

The masses of WL and WR charged bosons are obtained in the Appendix 
for the case when the symmetry is broken by ~h~ and ~b2. For the general 
case, when the symmetry is broken by all the 4)'s mentioned earlier, we have 

m 2 1 2 V 2 
W L = ~ g L  o ( 4 5 )  

2 1 2 . r2  
m wR = zgRv~  (46) 

where Vo and V~ are defined in (39) and (40). 
The above relations must be true, since whenever (28) is true, as in the 

2 successful standard model, we have m z  m Z e / ( 1 - x e ) .  Moreover, (45) 
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and (46) are the generalizations of the results of  the Appendix, where we 
find that 

2 1 2 2 
m WE = agLVl  (47) 

2 1 2 2 
m we = agRv2 (48) 

which are special cases of  (45) and (46). 

5. THE STANDARD M O D E L  

We claimed in the introduction that this gauge model is the correct 
generalization of the standard electroweak model. This means that equation 
(28) is a generalization of the neutral sector of the electroweak SU(2)L • 
U(1) gauge model when the gauge group is SU(2)L• SU(2)R• U(1), and 
equation (33) is a generalization of the charged sector of SU(2)Lz  U(1) 
when the gauge group is SU(2)L• SU(2)R•  U(1). To prove this point, it 
is enough if we can show that the neutral sector of  the standard model is 
contained in equation (28) whenever XR->0, since the charged sector for 
the electroweak case is no different if ~eR is zero. Elsewhere (Raju, 1985) 
we have proved that the standard model limit is obtained only when x~--> 0, 
but not when XR--> 00. 

From equation (28), for zero momentum transfer the effective weak 
interaction Lagrangian in the neutral sector is given by 

eff, n 2 2 2 2 2 
5~we~k = (gz/  mz)J  zL q- (gz/  m D)[/3JzL - -  (0[ "}-/3 ) J z R ]  2 (49) 

2 2 2 2 2 2 = ( 4 G F / ~ ) ( P 1 J z L + P 2 J z L +  n J z R - 2 P 2 n J z ~ J z R  ) (50) 

To arrive at (50) as usual we used (39) and the definition Vo 2= Gv/4-2, 
where GF is the Fermi constant. We have also used the fact that 

where 

2 NZm 2 (51) roD= 

2 +  2 2 

N 2 =/32+ 2/3(a +13) u3-e v3_~ (c~ +/3)2 V x (52) 
Vo vo 

From equations (50)-(52) we observe that 

2 = 1,/2 P l = l  ' p2 /32/N2 ' = (oe + /3 )2 /N 2 (53) 

By standard model content, we mean equation (50), in which all the terms 
containing JZR are zero. This means that whenever XR~0, n 2 should be 
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zero. From equations (6), (26), and (27) we also note that 

XR=~(1--XL)/(~+~) 

Suppose 
N 2 = 2 q N J x R  (54) 

where N 2 is neither zero nor infinite when xR~0  and q ~ 3 / 2 .  Once (54) 
holds, we observe from (53) that in the limit xR~0 only the term 
4(Gv/ , , /2)JZL will be left out. No extra term of the sort of c~JZm survives 
over and above the J2zL term in this limit (Raju, 1985). In other words, the 
xL defined here must be identical to Xw, where Xw = sin20w, with 0w the 
Weinberg mixing angle. From the Appendix and (54) it is clear that when 
XR --> 0, /)2--)00. 

A P P E N D I X  

In this Appendix we consider the Higgs sector with two doublets ~1 
and ~2 only. For this situation, the Higgs sector of (1) is given by 

--(D,,L~I)+(D,~Lq~I)--(D,~Rq~2)+(D,~Rq~2)- V(q~q~,, (b+492,...) (A1) 

where 

D~I~ = (0,~ -igL�89 A~, - ig'~C,~) (A2) 

D~R = (a ~ , 1 - tgR~'r" B~ - ig'�89 (A3) 

and V is the potential. In (A2) we introduce the fields Z1, Z2, WL, I$'L, 
and A~m to obtain 

D~L~bl = 0 4 - ~ W ~ I ~  0 10) 
ig I ( 2 K  + a2(1 + al) 

2(K-+ a2) 0 

ig2 _ ( 2 K + a , ( l + a 2 )  0 ) ] 
2 ( K + a l ) \  0 a l ( a 2 - 1 )  Z2~ 4q 

From (A4), --(D~,Lchl)+(DL(al) is given by 

--[ ~ OaXI OaXI'Ji-g'~ Wo~L ~'ZaL( Z)I'JC X1)2 

1 g 2 a ~ ( l - a l ) 2 z  Z "v + ,2 
"~ 2 4-4~"~2) 2 lo' loe~ 1 Xl) 

I g 2 a ~ ( 1 - a 2 ) 2 ~  Z " + ,2] 

0) 
a 2 ( a l -  1) ZI~ 

(A4) 

(A5) 
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In an exactly similar fashion, for the second term of (A1) we find that 

-- (D,~R~b2)+(D~Rq52) 

1 0 + g 2  
= -  ~ o~x~ ox~ - 7  wo~ vc~( ~ + x2) 2 

1 g2(1 - a l ) 2 K  2 

q 2 (K q- a2) 2 'ZI~176  

2el  a X2K2 "] 
1 g2t - 2) Z2,~Z2o,(v2+X2)2J (A6) 

In arriving at (A5) and (A6) we have defined Xl and X2 in the usual 
manner: 

From (A5) and (A6) we now note that 

2/4 a ~2 
m 2 _ g i r l -  1) ,a  2 2+K2 2, 

Z 1 4 ~  ~-~a~2)2 ~ 2/)1 /)2J 

rnz~ 4 ( K ~ a l ) 2 t a l v a  ~ v2) 

2 1 2 2 
mW L  = ~gLVl 

2 1 2 2 
m W R  = ~gRV2 

(A7) 

(AS) 

(A9) 

( a l 0 )  

( a l l )  

Expressions (A8)- (Al l )  are special cases of equations (37), (38), (45), and 
(46), respectively. 

For the potential we have (Langacker 1981) 2 

g.~ .  2 + 2 + + 2 + 2 + + -~14,1 ~1-~2~2~2+a1(~, ~1) +a2(~2 4,2) +a3(~, ~1)(~2,~2)+ vB 
(A12) 

Here 

V B  1 2 2 = 4V1~)2 C0S2 •2 [2A4(COS 2O'2) + AS] (A13) 

The electric charge will be conserved if {cos o~2] = 1 and As < 21a4] when we 
minimize (A12). The sign of cos 2o-2 will be opposite to that of A4. With 
these conditions assumed, we can write VB as 

VB 1- 2 2 (A14) ~ A 6 U l V  2 

2Note that these A t and/~2 are different from the Al and A2 of the text. 
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where 

~6 = [2a4(COS 20"2) + As] (A15) 

The space-time-independent part of V is now given by 

V ~  2 2 2 2 - -  4 4 1 2 2 
- / . g  1Vl - -  /'2"2 V2 -1- a I V 1 "1- A2 I)2 "l'- ~V 1/22(A3 Jr- A6) (A16) 

The expression given by (A16) can also be obtained from a similar expression 
considered by Mohapatra and Senjanovic (1981) by setting their k 2 and k '2 
terms zero and by assuming that their 61 and oh2 are doublets. The expression 
(A16) can be minimized under a constraint: [For other details o n / ,  and A 
see Bilenky (1982)]. The constraint is 

v 2 = N 2 v  2 (a17) 

where N is a constant function o fxa ,  xL, and many other, possibly unknown 
quantities. We introduce (A17) into (A16) and find the minimum. We have 

2 - -  x r2  2 
2 /'1 -vl'e /~2 (A18) L~I= 

A I q- A 2 N 4 - +  - N 2 ( A 3  q- A6)  

Expression (A18) should reduce to the standard model VEV when xR 
goes to zero or when N-+ oo, as mentioned in equation (54). This can be 
achieved in the following simple way. Let 

tx 2 = t z 2 /  N r (A19) 

and 

(a3 + A6) + AzN 2 = a o / N  * (A20) 

where ao and ~*o are neither zero nor infinite when XR~ 0. Introducing (A19) 
and (A20) into (A18), we have 

2 - -  2 x r2 - - r  
/.)2 - -  ~ 1 "i- /.~ OJ~ 

A1 q- AoN2_ s (A21) 

When r > 2 and s > 2, we observe that Vl 2 will be identical to the VEV of 
the standard model in the limit xR-+ 0, since for this limit N-> oo. Of course, 
there are other ways of achieving the same objective. From the constraint 
(A17) we require that v2-+ oo when N-+ oo. To achieve this, it is necessary 
to assume that r = s such that for large enough values of N, v 2 will be 
infinite if/,12 and A1 are independent of N. The last condition is necessary 
in view of the great success of the standard model. 
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